Artificial intelligence outperforms experienced nephrologists to assess dry weight in pediatric patients on chronic hemodialysis

Background: Dry weight is the lowest weight patients on hemodialysis can tolerate; correct dry weight estimation is necessary to minimize morbi-mortality, but is difficult to achieve. Here, we used artificial intelligence to improve the accuracy of dry weight assessment in hemodialysis patients.

Methods/results: We designed a neural network which used bio-impedancemetry, blood volume monitoring, and blood pressure values as inputs; output was artificial intelligence dry weight. Fourteen pediatric patients were switched from nephrologist to artificial intelligence dry weight. Artificial intelligence dry weight was higher (28.6%), lower (50%), or identical to nephrologist dry weight. Mean difference between artificial intelligence and nephrologist dry weights was 0.497 kg (- 1.33 to + 1.29 kg). In patients for whom artificial intelligence dry weight was lower than nephrologist dry weight, systolic blood pressure significantly decreased after dry weight decrease to artificial intelligence dry weight (77th to 60th percentile, p = 0.022); anti-hypertensive treatments were successfully decreased or discontinued in 28.7% of cases. In patients for whom artificial intelligence dry weight was higher than nephrologist dry weight, no hypertension was observed after dry weight increase to artificial intelligence dry weight; when present, symptoms of dry weight underestimation receded.

Conclusions: Neural network predictions outperformed those of experienced nephrologists in most cases, proving artificial intelligence is a powerful tool for predicting dry weight in hemodialysis patients.

Keywords: Artificial intelligence; Bio-impedancemetry; Blood pressure; Dry weight; Hemodialysis; Neural network.

Article source:Niel O, Bastard P, Boussard C, Hogan J, Kwon T, Deschênes G. Artificial intelligence outperforms experienced nephrologists to assess dry weight in pediatric patients on chronic hemodialysis. Pediatr Nephrol. 2018 Oct;33(10):1799-1803. doi: 10.1007/s00467-018-4015-2. Epub 2018 Jul 9. PMID: 29987454.

Please follow and like us: